Porsche 991 Turbo
Acceleration Time : 60-130mph Reduced By 0.2 seconds
Fitment: Porsche 991.1 991.2 Turbo, Turbo S
The 991 Turbo Eventuri intake system was developed through extensive real world testing with the aim of allowing the turbos to work more efficiently. By replacing the single stock airbox with individual patented Venturi filter housings, the turbos are able to spool and generate boost with less drag. As a result, the wastegate duty cycles are reduced resulting in peak boost at lower RPM and therefore performance is increased. The two individual filters provide a larger filtration area as compared to the single stock panel filter. Furthermore, in order to keep inlet air temperatures down, the Venturi housings are sealed against an air duct which draws ambient air from the same location as the stock system. Since the 911 Turbo engine bay is densely packed, high IATs can only be avoided by ensuring a fully sealed intake system. The combination of a smoother airflow path to each turbo with low IATs results in higher performance and a sharper throttle response over the stock airbox.
The Eventuri Difference
The 911 Turbo Eventuri system uses our Patented Carbon Fibre Housings with our Gen 2 bespoke filters, which provide an aerodynamically efficient airflow path from the filter to the turbos. Not just another cone filter with a heat shield but a unique design which invokes the Venturi affect and maintains laminar flow conditions to reduce the drag on the turbo. You can read more about the housing design and how it works HERE.
Acceleration results summary:
- 60-130mph with Stock intake = 8.04 seconds
- 60-130mph with Eventuri intake = 7.83 seconds
The gains are from a combination of reasons:
1) Individual Venturi Housings separate the flow path for each turbo allowing them to work more efficiently.
2) The Venturi housings provide a smooth transition from the filter to the intake tubes keeping airflow laminar.
3) Intake air temperatures are kept to a minimum by ensuring a sealed system to prevent pulling in heated engine bay air.